If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6p^2-2p-60=0
a = 6; b = -2; c = -60;
Δ = b2-4ac
Δ = -22-4·6·(-60)
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1444}=38$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-38}{2*6}=\frac{-36}{12} =-3 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+38}{2*6}=\frac{40}{12} =3+1/3 $
| 5x+9x+9x=9x-10 | | 28-3x=-(x-10) | | 5(2x-3+4=-6 | | 5x-30+2x+75=180 | | (1/3)(9x-42)-5x=-70 | | 2x+4=3x–5 | | 180=5x+60-40 | | 14x-5=61 | | -5(x-2)+4x=8(x+1)-9x | | 7x+9=14-x+3 | | 3x-2+8x-10=90 | | 4x^2=5/1/3 | | 31=w/3+16 | | -55+4x+80=9x | | -7x-5=-4x-20 | | (x^2-16)+30=36 | | 10+2x=-3x-20 | | y/5=−9 | | -97x=-130 | | 3/5(d+18)=−3(2−d) | | (7x-25)=(4x+2) | | 15-u=276 | | x-27+x+x=180, | | 6-4(x-2)+8x=2((x+6) | | (5x)-1=16 | | 53 (d+18)=−3(2−d) | | -3=-5n/5 | | (-(2/5))x=40 | | 23=92/2x | | 2x-15+x=-3x+15 | | n-(-17)=36 | | 4x+26+3x+7=180 |